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Phase-distribution mechanisms in turbulent lowquality 
two-phase flow in a circular pipe 

By D. A. DREW AND R. T. LAHEY 
Rensselaer Polytechnic Institute, Troy, New York 12181, U.S.A. 

(Received 29 October 1979 and in revised form 4 November 1981) 

The radial distribution of the volumetric vapour (or void) fraction in steady, fully 
developed turbulent two-phase flow is described for vertical low-quality bubbly flows 
in a circular pipe. The analysis is based on the phasic equations of conservation of 
momentum in the axial and radial directions. Mixing-length theory is used to model 
the turbulent stresses in the continuous phaae. The predicted flow structure shows three 
distinct regions. The 'outer' region, that is, the region away from the wall and the 
centre-line, has a uniform void distribution. For upflow, a bubble layer is predicted 
near the wall, while for downflow, vapour coring is predicted, with a peak in void 
fraction at  the centre-line. These predictions are in agreement with observed void 
profiles. 

1. Introduction 
Two-phme flows axe of great practical concern in a large number of engineering 

disciplines, including the chemical, petroleum, and power industries. As an example, 
questions concerning nuclear-reactor safety have led to a demand for an understanding 
of the detailed phase-distribution mechanisms involved in two-phatm flows. 

The complexity of two-phase situations is reflected in the type of experimental data 
available. Most of the two-phase data consists of global measurements, such as total 
static pressure drop and quality. Engineering design and analysis are based largely on 
empirical correlations, which are usually valid only for the specific geometries and flow 
conditions tested. When more detailed information is needed, such as the lateral void 
distributions, the correlations fail to provide any insight or information. 

The purpose of this paper is to provide a rigorous mechanistic basis for the descrip- 
tion of radial void distributions in a circular pipe for low-quality bubbly flow. By pro- 
viding a fuller understanding of the process involved in this simple geometry, it is 
hoped that more understanding can be gained of similar phenomena in complex 
geometries, so that correlations can eventually be replaced by analytical models. 

Detailed measurements of many time-averaged, local properties of vertical, co- 
current adiabatic air-water upflow in a circular pipe were taken by Serizawa (1974). 
Figure 1 shows the void distribution obtained for a given superficial liquid velocityjl: 
For low-quality flow, Serizawa observed that the flow was bubbly, and that a pro- 
nounced bubble layer occurred near the wall. As the quality increased, the flow made a 
transition to slug flow. For these flows, the void fraction showed a peak in the centre of 
the pipe. 

Other data, taken by Oshinowo & Charles (1974) showed quite different trends for 
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FIGURE 1. Void fraction a@); profiles forj, = 1.03 m/s (Serizawa 1974), Z / D  = 30. 
Bubble flow : V , flow quality 0.0085 ; 0,0.0170 ; ,0.0258 ; A, 0.0341. Slug flow: A, 0.0427 ; 

0 ,  0.0511. 

vertical co-current downflow. In  particular, there was no bubble layer at the wall, but 
there WM pronounced tendency for the bubbles to concentrate along the centre-line of 
the pipe (‘ coring ’). An accurate model of phase distribution should predict these 
observed trends. 

In  what follows, we shall derive equations that predict the velocity and void profiles 
in bubbly flow in a circular pipe. Our analysis is based on the time-averaged equations 
of motion for multidimensional two-phase flows. These equations are applied to steady, 
fully developed air-water two-phase flow in a circular pipe. Two fundamental -sump- 
tions will be made concerning the turbulent stresses, namely that: (i) the gas-velocity 
fluctuations are driven by the velocity fluctuations in the liquid, and (ii) the liquid 
Reynolds stresses are adequately modelled using mixing-length theory. The cross- 
sectional area divides naturally into three regions. In  the wall boundary layer, the 
viscous stresses, the turbulent stresses and the buoyancy forces all combine to deter- 
mine the void and the velocity profiles. Close to the centre-line, classical mixing-length 
theory underestimates the effect of the turbulence. Thus, there must be a region near 
the centre-line where the Reynolds stresses, modelled using mixing-length theory, 
must be modified. Finally, in the rest of the cross-section, the viscous forces are negli- 
gible, and standard mixing-length theory is expected to give good results. 
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2. Averaged equations 
Perhaps the most practical approach to multidimensional two-phase flows is based 

on time-averaging. 'While there are difficulties with the simplest time-averaging pro- 
cess, more sophisticated averaging processes do not lead to new insights into the 
fundamentals of two-phase flow, nor do they lead to averaged equations that are 
different in any way, other than in the interpretation of the averaged variables. Thus 
the most simple definition of time averaging will be used here, and, as has become 
customary, the associated difficulties will be ignored. 

The time average, as defined by Delhaye (1968) and expounded upon by Ishii (1976), 
is defined by 

1 t+T 
pcx, t )  = FJt  f(x, t ' )  dt'. 

The characteristic function of phase k is defined by 

1 

0 otherwise. 

if x lies in phase-k at time t ,  

- 
The time fraction of phase k is defined to be ak = x k .  

Other averages are the phasic average of 9, defined (Ishii 1975) by 
-- 

$k = x k $ / x k ,  

and the mass-weighted average of $, defined (Ishii 1975) by 
-- 

$k = x k P $ . / x k P ,  
where p is the density. 

(3) 

(4) 

The.time-averaged equations expressing the conservation of mass for phase k are 
(Ishii 1975) 

+ V . a k p " k ? k  = r k ,  (5) 
p k  

at 

where 8, is the mass-averaged velocity. The quantity rk: is (Ishii 1975) the rate of inter- 
facial mass transfer to phase k: 

where Xi indicates the summation over the discontinuities (interface passages) during 
the averaging interval T ,  vi is interfacial velocity, nk is the unit (outward) normal to 
phase k, and pk  and vk are the values of the density and velocity on the phase-k side of 
the interface. Similarly, conservation of linear momentum for phase k is given by 
(Ishii 1975) 

a k p k ( a ? k / a t  f 8,. v 8 k )  = - a k v f l k  + v.  ak(?k + 8,) 

+ a k p k  g k  + ( @ k - p k , j )  vak + M t  + rk(tk-Vk, i ) ,  (7) 

where @k is the phasic-average pressure, +k is the phasic average of the viscous stresses, 
u = - x k P ( v  - i i k ) ( v  - i i k )  is the 'turbulent ' stress (due to velocity fluctuations about 

4-2 



94 D. A .  Drew and R. T. Lahey 

the mass-weighted-average velocity), and g k  is the body force of phase k. Also, the rate 
of interfacial momentum transfer is written as 

where v k ,  and P k , i  are respectively, the interfacial average velocity and pressure and 
p k  and T~ are the values of the pressure and the viscous stress on the phase-k side of the 
interface. 

In  (7), we have used the result that 

- Va,. nk 

FY1.n,T = 

The detailed definitions and derivations of these equations can be found in Ishii's (1976) 
book. 

In  order to simplify the notation used in the remainder of this paper, we shall drop 
all notation for averaging (overbars etc.), except where such notation becomes un- 
avoidable. 

3. Void profile relations 
It is our goal to  examine the fundamental mechanisms governing phase distribution 

in pipe flows. Thus we shall restrict our attention to a special flow situation, namely the 
steady (a/at = 0), fully developed (a /&  = 0, except for pressure) turbulent flow of an 
axisymmetric adiabatic air-water mixture in a circular vertical pipe. The assumption 
that the flow is steady and fully developed simplifies the mass- and momentum-balance 
equations immensely. Furthermore, treating an adiabatic air-water mixture obviates 
the need for considering the energy equation. Lastly, the assumption of axisymmetric 
flow in a circular pipe simplifies the geometry so that the problem becomes tractable. 

It is convenient to neglect surface-tension effects and assume that l )k  = -pk,i = p .  
Furthermore, we shall assume that both the liquid and gas phase densities are constant. 
This latter assumption is motivated by the observation that under normal conditions, 
the liquid and gas densities change very little. Moreover, the lateral phase distribution 
observed in solid-liquid systems indicates that compressibility effects cannot account 
completely for phase-distribution effects. 

With these assumptions, we have uk = ak(r),  vk = uk(r)e,, andp = p(r ,z) .  We denote 
gas by k = G and the liquid by k = L. We also write aQ = a, so that uL = 1 -a. We 
see that the phasic equations of conservation of mass are satisfied identically; and the 
equations of momentum conservation become 

for conservation of gas momentum in the radial direction, 
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for conservation of liquid momentum in the radial direction, 

aP l a  
0 = -a - - upa g cos 8+ -- ra ( T ~ , ~ ~  + v ~ , ~ )  + M s , z  

az r dr 

95 

(11) 

for conservation of gaa momentum in the axial direction, and 

aP I d  
0 = - (1 - a)  - - (1 -a) p i  g cos 8 +- - r (1 - ta + aL, =) - M& (12) az r dr 

for conservation of liquid momentum in the axial direction. 

momentum-transfer terms; however, for completeness we write 
Our discussion is not too dependent on the particular form chosen for the interfacial 

where 
C, = C, (Reb, a). 

The parameter fi is the bubble radius, and CD is the interfacial drag coefficient, which 
is assumed to depend on the bubble Reynolds number Reb and the void fraction a. For 
bubbly air-water flows, one correlation that works reasonably well uses a standard 
low-Reynolds-number form, with a modified viscosity (Zuber t Ishii 1978) 

where 

and the effective mixture viscosity is taken to be, 

where pL is the liquid viscosity and aam is a constant. In  (11) and (12), cos 8 = 1 
for upflow, and cose = - 1 for downflow. 

The pressure p(r,z) can be separated as 

where Ap = pi -po is the pressure drop between the inlet and outlet of the pipe, and L 
is the length of the pipe. The function p'(r) contains all information about the radial 
variations. 

A relation between a(r) and the turbulence structure of the liquid hss been derived, 
and the implications thereof explored in previous papers by Drew, Lahey t Sim (1978) 
and by Lahey & Drew (1979). These derivations will be summarized here to show the 
connection to the present work, and because it is convenient to use an intermediate 
result as a starting point for the present work. 

The pressure gradient can be eliminated from (9) and (10). The resulting equation is 
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Serizawa’s (1974) data shows that for bubbly flow the turbulent stress of the gaseous 
phase is proportional to that of the liquid phase. That is, we assume 

uo,tj = @ a / P L )  Cl V L , i ,  = q=L,ij .  (14) 

Equation (14) implies that the continuous (liquid) phase-velocity fluctuations drive 
the dispersed (gas) phase-velocity fluctuations. 

We shall assume that q is not a function of r. Indeed, Serizawa’s ( 1974) data indicates 
that C, 21 1 for bubbly flows. We see from (14) that C, = 1 implies that the r.m.8. 
velocity fluctuations of each phase are equal. 

It is convenient to  define 

F,, = *aL, ,,/KL (no summation onj) . 
KLia the total turbulent kinetic energy of the liquid phase, and the ‘ F ’-factors quantify 
the degree of anisotropy of turbulence structure. 
After some manipulation, we obtain from (13)-( l6) ,  

- (17) 

Equation (17) can be integrated to obtain 

where C, is the constant of integration. 
Equation (18) expresses a relation between the radial void fraction distribution 

a(r) and the liquid-phase turbulent-kinetic-energy distribution K L ( r ) .  Furthermore, 
the void distribution also depends on the anisotrophy of the liquid-phase turbulence. 

Some aspects of the relationship between the local void fraction and the liquid-phase 
turbulence structure have been previously examined (Drew et al. 1978; Lahey & Drew 
1979). It was found that the turbulence structure must lie between isotropic (F,, = 
F e e  = Fw = +), and the anisotropic structure found in single-phase turbulent flow in 
pipes. These works found it convenient to work with KLe = KLFm, instead of KL, since 
K,, is the quantity measured by Serizawa (1974). 

Drew et al. (1978) show excellent agreement between the theory, (18) and the data of 
Serizawa (1974). Lahey & Drew (1979) have extended the derivation to ducts of 
arbitrary cross-section. However, since the void-fraction distribution is so dependent 
on the liquid-phase turbulence structure, it is desirable to derive a model which is more 
predictive. That is, we seek a model that requires less information about the turbulence 
structure to predict the lateral void profiles. Indeed this is the whole thrust of this 
paper. 
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4. Asymptotic analysis 
For many flows of practical interest, we have pQ/pL < 1, and thus p, defined in (14), 

is small. We wish to exploit the relative smallness of this parameter. If (1 1) and (12) 
are added, we can obta& the mixture momentum equationin the form 

I d  
r dr -- r{[a7Q. w -!- - a) TL, wl + [avQ, t s  + -a) vL, w l }  

AP +-- [apQ+(l -a)pL]gcose = 0. L 
If we neglect the ratio palm, compared to unity, (19) becomes 

r dr L 
I d  AP -- r( 1 -a) (7L, + vL,;) + - - (1 - 9 COB e = 0. 

Furthermore, if we neglect po/pL in (ll),  we have 

CC-++M(UL-U~) AP = 0. 
L 

Equation (21) expressed a balance between the interfacial drag force, and the pressure- 
gradient (buoyant) force. If uL(r) and a(r)  are known, then (21) can be solvedfor u&). 

We can view the roles of these equations in the following way. The radial momentum 
equations determine the phase distribution a(r) in terms of the liquid turbulence 
structure. Equation (18) expresses this result. The axial momentum equations, (1 1) 
and (12), reduce to (20) and (21) and yield the velocity fields, in terms of the imposed 
pressure gradient, and the void-fraction distribution a(r).  Equation (21) can be solved 
for uQ, if uL is known. Unfortunately, the turbulence structure is also involved in (18) 
and (20). Thus, ( 18) and (20) are coupled through the local void-fraction and turbulence 
terms. In  order to  proceed further, it is necessary to make some closure assumptions 
concerning the turbulence terms. 

We have chosen a mixing-length theory for the closure relations for several reasons. 
First, for single-phase flow in a pipe, mixing length theory does a credible job in giving 
analytic results for the mean-flow properties, such as the velocity profile. Also, mixing- 
length theory is relatively simple and straightforward to apply. It is our opinion that a 
more complicated theory (such aa a theory that predicts the kinetic energy) should be 
employed only after a simpler theory fails, or should be used to fill in details missed by 
the simpler theory. Note that an ‘eddy-viscosity ’ theory, while simpler than mixing- 
length theory, is deficient in that it predicts rLBW = v,, = 0, which is not true for any 
but the most trivial two-phme flows. Finally, mixing-length theory allows us to model 
all components u ~ , ~ , ,  in accordance with the needs of (18) and (20). 

Thus we write 

where I ,  is a mixing length. 
We further assume that 
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where K~ is a constant. In (23), the term KLO(r)  is added to the ‘usual’ mixing-length 
assumption for K,,, in order to overcome a classical difficulty with mixing-length 
theory at the centre-line. To understand this difficulty, consider (23) at the centre-line 
r = 0. At this location, duL/drlT=, = 0,  and K,, = KLo(0). Thus, without KLo(r) ,  the 
turbulent kinetic energy at the cent,re-line would incorrectly be predicted to be zero. 
As we shall show shortly, the KLo parameter is important in determining the void pro- 
file near the centre-line. 

From (22) and (23), we have 

g L ,  re = - 2KE (KLZ - KLO) (24) 

where we have used I duL/dr 1 = - duJdr,  since weexpect du,/dr c 0 .  Weshall further 
use a viscous model of the form 

Combining (23) and (25) gives 

TL,  rz = - 

where the negative square root is chosen since 

duJdr < 0. 

Let us now examine (18), with the approximation that q < 1. This assumption implies 
that 1 - q = 1 ; however, we must use caution with the quantity aq. If a is not close to 
zero, we have 

(27 1 
If a = 0, however, In a is not defined, and consequently the expansion (27) is not valid. 
To escape this difficulty, we shall leave aq in (18), but use (27) when we know that 
a 9 0. Thus (18) gives 

aq = e q h a  = 1 +qlna+ ... . 

(28) 
C;l aq 

KLZ = KLFZZ = Z f W ,  
where 

Finally, combining (28), (29), (26) and (24) with (20), we obtain 

+--(l-a)pLgcos8= AP 0. (30) 
L 

Equation (30) is an ordinary differential equation that governs the void profile a(r) 
throughout the cross-sectional area 0 < r < R. The appropriate boundary conditions 
on a(r)  are 

a(0) is bounded; ( 3 1 4  

a(R) = 0; (31b)  
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where ( ) denotes the cross-sectional average. Equation (31 b) states that no vapour is 
in contact with the wall, and (31 c) specifies the average void fraction in the pipe. 

Equation ( 3 0 )  involves several parameters that characterize the turbulence struc- 
ture; namely q, KL,  ZL,f(r) and KLo(r).  The present knowledge of two-phase turbulence 
modelling precludes the practical use of ( 3 0 )  for predicting the void profile. However, 
for many flows of practical interest, three conditions are satisfied; specifically 

PGlPL -4 1, ( 3 2 a )  

I CL.2, I @ P L U 2 ,  ( 3 2 4  

where U is a velocity scale. For example, in Serizawa's (1974) data, pa/pL 2: 0.001 
'and flow Reynolds numbers Re,, were greater than 105. Moreover, these data show 
that c ~ , ~ ~ / ~ ~ U ~  < 0.1 for all cases. 

We wish to use these ideas to find approximate solutions of (30 )  valid in sub-regions 
of the interval 0 < r < R. There are three sub-regions where meaningful approximate 
solutions can be found: near the wall, near the centre-line, and in the annular region 
between these regions. As we shall see, the above assumptions yield plausible approxi- 
mate solutions of ( 3 0 )  that need little information about the turbulence structure. 

Outer solution 
Let us consider an approximation to (30) that is valid away from the wall. Near the 
wall, we expect viscous effects to be important. Away from the wall, however, we 
expect the viscous terms to be small compared with the turbulence terms. We also 
assume aq N 1, since we don't expect a. to vanish. Away from the centre-line, we 
expect KLO ( T )  = 0.  Thus, the approximation valid away from the wall, and away from 
the cent.re-line is 

Solving ( 3 3 )  for ao(r) gives 

( 3 4 )  
1 i d  ao(r) = 1 -  Ap + - - [2r~ i&l fcr ) l .  

p,gLCosO pLgcos8r dr 

For low-quality bubbly flows we expect the pressure gradient and gravitational 
effects to dominate the turbulence effects. In  this case, we have 

Thus in the 'outer' region a. is a constant. From figure 1, a constant a. is obviously a 
good approximation for low-quality bubbly co-current flows. 

The appearance of the pressure drop A p  in (35) is inconvenient for some of the calcu- 
lations in subsequent sections. For that reason, we shall eliminate the pressure drop 
from (35 )  using the area-averaged pressure-drop equation. To obtain this equation, 
let us now multiply (20 )  by 2nr, and integrate from r = 0 to r = R. This yields 

2nR( 1 - ~ ( R ) ) T ~ ,  (R)  + nR2 ' p  - n ~ z ( i  - ( a ) ) p L  g cos 8 = 0,  (36 )  
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where 

and we have assumed that gL,rz = 0 at r = R. From (18), we note that since KL = 0 at 
r = R, we must have a(R) = 0. Thus (36) becomes 

We further note that 7L, ,(R) is the force per unit area exerted by the fluid on the pipe 
wall. Thus we write 7L,rz(R) = -7w, where 7, is the force per unit area exerted on the 
fluid by the pipe. From (38) we have 

The pressure gradient Ap/L can be eliminated from (35), resulting in 

Let us now seek an approximate ‘inner’ solution valid near the centre-line. 

Inner (Centre-line) solution 

First, we can rescale the radial co-ordinate by letting r = ey, where B is to be chosen to 
balance the first derivatives in (30) with the wall-shear and gravitational terms. The 
desired balance can be achieved by choosing 

We shall further assume that a* 2~ 1. From (28), we note that for r = 0 and q -g 1, 

C,-lf(O) = [I-  W l  KLZ(0). (41) 

Since KLz(0) = KLo(0), (30) becomes, to lowest order 

The wall stress can be eliminated through (40), giving 

The solution of (43) is 
CeCOS@Y a(0) -ao 

a(y) = ao-- - - 
ycose  9 

(44) 

where C is the constant of integration. 

ately. 
Let us now consider the upflow (cos 8 = 1) and downflow (cos 0 = - 1) cases separ- 

rrpfrow (cos 6’ = 1) case. In  order to match a(?) to a. as y + 00, we must have C = 0. 
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Furthermore, for a(0) to be finite, we must also have a(0) = a0. Therefore, the 'inner 
solution ' for the centre-line approximation becomes 

a(r) = ao. (46) 

That is, for upflow there is no perceptible build-up of void at the centre-line. 
Downflow (cos 8 = - 1) m e .  Here C is not determined by matching as y + 00; in fact 

a + a. as y + 00. For a(0) to be bounded, we must have a(y) finite as y + 0. This 
implies the requirement 

so that 
c = a(0) - r%o, 

4 0 )  - [I- e-q. (46) 
Y 

In this case, however, requiring boundness a t  y = 0 gives no further restrictions on 
the parameters. Hence, for downflow a(0) is arbitrary, and must be specified by some 
other means. 

Thus the amount of vapour in the centre-line region for upflow is determined through 
matching. For downflow, on the other hand, the void profile has a degree of freedom, 
which means that the amount of vapour in the centre-line region is still to be deter- 
mined. This problem will be resolved when the full solution is discussed. 

Let us now consider the 'inner' solution valid near the pipe wall. 

47) = ao+ 

Inner (Wall) solution 
Since we are looking for a valid approximation near the wall, it is convenient to define 

R-T = s*{, (47) 

where the small parameter e* will be chosen to balance the terms in (30) involving 
daldr and the pressure gradient. As will be shown, this choice of e* will allow us to  
satisfy the wall boundary condition a(R)  = 0.  

Let us also assume that near the wall the mixing length can be written as 

ZL(T) = h ( R - r )  = kLc*g. (48) 

In order to balance the terms involving daldr and A p / L  in (30), the correct choice of 
the parameter e* is 

Dividing (30) through bypLg, using (49), and neglecting terms of order E*,  we obtain 

where 

[ f ( R )  - R TI). 2& C;'aq 
PL B R 

We note that away from the centre-line of the pipe, KLO = 0. Since under atmospheric 
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conditions q Q 1, we have aq 21 1. However, we do not neglect A , since it is proportional 
to q / e * ,  and e* is also a small parameter. 

Let us now consider the parameter B. For the case in which q < 1, 

2KL ci - -pL g cos 8-  - [fcR) - R 
PL g R (53) 

It is convenient to write the parameter B in terms of ‘outer-solution’ quantities. If 
we examine (34), we see that 

If we further use (54) in (50) we have 

B = - a , ( ~ )  cos 8. (54) 

d a  2[-2 (1 - a)* - [a - a,(R)] cos 8 
dS - Aa-1- [-1(l- a)-& * 

_ -  

The appropriate boundary condition for (56)  is 

a(0) = 0. 

(55)  

In  addition, we must satisfy a matching condition (to merge the inner and outer solu- 
tions) given by 

lim a([)  = a@). 
c+- 

(57) 

Equation (55 )  governs the void profile near the wall. It does not appear to be possible 
to achieve a closed-form quadrature of (55)  ; however, important information about 
its solution can be obtained through the use of graphical techniques. To do this, let us 
divide the region of interest into regions where auld[ > 0 and da/d[ < 0. 

We note in (55)  that daldg = 0 when the numerator is zero (unless the denominator 
is also zero), that is da/d[ = 0 when 

2(1-a)+ 

ca - [a - a,(R)] cos 8 = 0. N =  

For the cases of interest here, COB 8 = + 1 for upflow and cos8 = - 1 for downflow. 
The curve in the (a, [)-plane along which da/d[ = 0 is given by (58)  as 

n n  

where the plus sign is for upflow and the negative sign is for downflow. 

vanishes. This is given by the solution of the equation 
It is also interesting to consider the curve along which the denominator of (55)  

which is 

The curves in the (a,[)-plane where the numerator and the denominator are equal to 
zero are shown in figures 2 and 3 for upflow and downflow respectively. Typical solution 
curves (of (55 ) )  are also shown. These curves were drawn by considering the slope 
da ld [ ,  and noting that the solution curve cannot cross the denominator-equals-zero 
curve (e l ) ,  except possibly where there is an intersection with the numerator-equals- 
zero curve (59). This latter situation cannot occur, since if the solution curve had gone 
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I s 
FIUTJRE 2. a 218. for upflow (COB 6 = + 1). N k numerator of (09); D is denominator of (71); 

da/dg = N / D .  

D > O  

A Solution curve 

FIUTJRE 3. 01 218. g for downflow (CO8 0 = - 1). 

through the intersection point it would be in a region where N < 0 and D < 0, thus 
da/dc = N / D  > 0, and it could never return to the a,(R) line. 

It is interesting to note that for the upflow case there is peaking of the void fraction 
in the wall region, while for the downflow case no peaking is predicted. This is exactly 
the trend seen in the data of Oshinowo & Charles (1974). Thus it appears that both the 
inner and outer solution correctly predict the observed ‘ bubble-coring ’ trends. 

Matching 
Let us now put these solutions together. There are three pieces, given respectively by 
(40) for the ‘outer’ region, away from the walls and centre-line; (55) for the ‘inner’ 
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solution of the wall layer; and (45) and (46), which are the ‘inner’ solutions valid near 
the centre-line. 

In  order to appreciate the relationship between these results, we must first note one 
feature of the solutions of (55). For upflow, there are many possible ‘inner’ solutions 
that are valid near the wall layer. This non-uniqueness is due to the singularity at the 
origin. It can also be seen by looking at figure 2. The solution curve shown is only one of 
many possible solution curves. Others may be obtained in the following way. On the 
curve N = 0 select a point that is below the intersection of the N = 0 and D = 0 curves. 
Integrate (55) back to 6 = 0, and forward to [ = 00. This gives a solution to (55) that 
satisfies a(0) = 0 and a + a@) as + 00. For each point selected on the curve N = 0 
there is a solution. 

As discussed previously, we also see in (46) the same sort of non-uniqueness in the 
centre-line approximation for downflow. That is, any choice of a(0) gives a valid solu- 
tion. In contrast, as can be seen in figure 2, for the downflow case, the ‘inner’ (wall- 
layer) solution to (55)  is unique. 

The total picture, then, must be as follows. First, for upflow, the overall solution is 
as shown in figure 4. Note that there is no singular behaviour at the centre-line. The 
particular wall-layer solution must be chosen to satisfy the necessary condition that 

For the downflow, the overall solution is as shown in figure 5. There are separate 
‘boundary’ layers at the wall and at  the centre-line of the pipe. The wall-layer solution 
is uniquely determined, but the centre-line solution is not. Here, the particular centre- 
line solution must be chosen to satisfy the necessary condition that 

(a) = /ra(r)27rrdr/nR2. 

5. Discussion 
For low-quality bubbly flow we have been able to construct appropriate ‘inner’ and 

‘outer’ solutions that require little information about the turbulence structure and 
yet predict properly the observed effect of the flow orientation. 

There are numerous assumptions involved in the solutions presented here. To aid 
the reader in assessing these assumptions, we shall recap them here. 

The flow is assumed to be steady, fully-developed, adiabatic air-water bubbly flow. 
Surface tension is assumed to be negligible, and the phasic pressures are assumed to be 
equal. 

Several assumptions have been made concerning the turbulent stresses. First, the 
gas-phase turbulence-stress tensor is assumed to be proportional to the liquid-phase 
stress tensor, the constant of proportionability being proportional to pa/pL (see (14)). 
Mixing-length theory is used to model the liquid-phase turbulent stresses. In accord- 
ance with standard practice, the mixing length is assumed proportional to the distance 
from the wall, in the region near the wall. With these assumptions, it  is shown that void 
profile a ( r )  obeys (30), with the laminar and Reynolds stresses given respectively by 
(24) and (26). The relation between the liquid turbulent kinetic energy and the void 
fraction is given by (28). 
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FIGURE 4. Theoretical solution - low-quality, bubbly upflow. 
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FIGURE 5. Theoretical solution - low-quality, bubbly d o d o w .  

Next, three physical assumptions were made. First, the gas density was assumed to 
be small compared to the liquid density. The flow Reynolds number was assumed to be 
large, and the r.m.8. liquid turbulent-velocity fluctuations were assumed to be small 
compared to the mean-flow velocity. 

With these assumptions, the pipe cross-section breaks up naturally into the flow 
near the wall, and the flow in the core region, away from the wall. The flow in the wall 
boundary layer is governed by (56),  which quantifies the balance between the pressure 
drop and gravitational force, the viscous stress, and the Reynolds stress, where the 
mixing length is assumed to be proportional to the distance from the wall. 

In the core, except near the centre-line, where mixing-length theory is inadequate, 
the void fraction is constant, and is given by (40). The balance in the core, except near 
the centre-line, is between the pressure gradient and the gravitational force. Near the 
centre-line, the classical mixing-length model was modified, yielding the void profile 
given by (44). This equation represents the balance between the pressure drop, 
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gravitational force and the Reynolds stress. This solution for void fraction is constant 
for upflow, and shows a peak at  the centre for downflow. 

For low-quality bubbly flow, the void profile a(r) is determined by competing mech- 
anical effects, and is quite different for upflow and downflow. We have been able to 
construct approximate (inner and outer) solutions that predict these observed effects. 

If the turbulence level is negligible compared with the imposed pressure gradient, 
then the ‘outer’ flow (i.e. the flow in the region between the wall and the centre-line) 
has a uniform void distribution. Near the wall, the interaction of turbulent stresses 
and viscous stresses determine the void distribution. For upflow, these forces combine 
to give a peak in the void profile near the wall. 

Such a bubble layer is not found near the wall for downflow. Rather, a peak in the 
void profile is found at the centre-line for downflow. The height of these void peaks, 
which occur at  different places for the two different flows, depends on the amount of 
vapour in the pipe. For upflow, the ‘outer’ flow has a certain amount of vapour flow 
area associated with it. Normally, this is not equal to  (a)nR2. From (40), we note that 
a, < (a), since there is appreciable vapour in the wall’s bubble layer. For downflow, 
the ‘outer flow’ again contains a certain amount of vapour. From (40), we again note 
that a, < (a),  where theexcess vapour is now in the core (i.e. centre-line) region. 

It is clear that the analysis present herein has captured the essential physics involved 
in the radial phase-separation process for bubbly flow. It should also be clear that 
considerably more work remains to be done to understand the turbulence structure if 
a(r )  predictions are desired for more complex cases, such as churn-turbulent two-phase 
flows. 
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